
Paper for the CHI 2002 Workshop on
Automatically Evaluating the Usability of Web Sites

AccessEnable: A Tool for Evaluating Compliance
with Accessibility Standards

Tom Brinck, Derren Hermann, Brian Minnebo, and Ali Hakim
Diamond Bullet Design and RetroAccess, Inc.

ACCESSENABLE
AccessEnable is an online tool developed at
RetroAccess, Inc. for evaluating and improving
the accessibility of web sites. AccessEnable is a
commercial service available at
www.retroaccess.com. It is organized around
rulesets that contain guidelines. The principle
rulesets are currently built around the Section
508 accessibility standards that apply to U.S.
federal government web sites (section508.gov)
and the W3C Web Content Accessibility
Guidelines (w3c.org/wai/). Some principle
aspects to AccessEnable include:
- It is designed around an efficient and

comprehensive process to identify and
correct accessibility problems to
successfully and uniformly comply with
standards.

- It supports both the testing aspects that can
be automated and the process of correcting
those that must be done manually.

- It is able to provide quick summaries that
facilitate the manual evaluation of
compliance, such as providing overviews of
images used throughout the site and their
corresponding attributes for review of
consistency and completeness in the
specification of those attributes.

- It supports the needs of a formal compliance
process by incorporating exception-handling
and formal documentation of the compliance
procedure.

- The rulesets are easily extensible, enabling
the tool to be rapidly adapted to other
standards and to serve to implement internal
corporate branding and style guides.

THE ROLE OF STANDARDS

COMPLIANCE IN USABILITY
While standards compliance is obviously not
adequate to ensure usability, or accessibility in
particular, it is an essential tool to provide
toward these ends. Standards are an important,

and often relatively inexpensive, first step toward
assuring usability, and the currently accepted
accessibility standards ensure a minimal level of
accessibility that makes it possible for people
with disabilities to access information, a
necessary precursor to providing information in a
usable format. Standards compliance can
provide supplementary checks that might not be
found in user testing, especially low-frequency
or situational problems that wouldn't be
encountered in the limited scenarios that can be
considered in user testing, such as software
compatibility issues or difficulties related to a
low-frequency disability.

THE ARCHITECTURE OF

ACCESSENABLE
AccessEnable is implemented in Perl and
designed to be easily extensible by dynamically
loading rulesets. By being provided online, new
standards and updates to existing standards can
be easily provided, as well as continuous
enhancement of guideline explanations and tips.
This saves the user from the trouble of
installation, compatibility issues, and monitoring
upgrades. The tool is also capable of evaluating
and improving its own interface.

The code evaluation is achieved by spidering a
web site and sending each page through a parser
which matches the code against rules to identify
problems. Record-keeping by the spider itself
enables cross-site consistency checks and
structural evaluation.

On individual pages, the parser must be robust--
violations of HTML syntax standards are
reported but they can't stop the progress of
parsing or else the number of problems found
would be highly limited. Some syntax problems
are extremely common, such as the appearance
of a less-than symbol, "<", within body text or
the misuse of quotes. Both Netscape and

Internet Explorer are robust in their ability to
display pages that violate standards, and while
AccessEnable reports these problems, it
continues to parse according to the
interpretations that IE would make of the code.
The alternative would be, when encountering an
unmatched "<", to report the rest of the page as
an error without further assistance.

Rules may check relationships across the entire
site or on a single page. Each page-specific rule
contains 6 procedures: initialization, start, stop,
action, finish, and fix. When each page is
loaded, the initialization procedures are called.
As AccessEnable parses the code, it passes
tokens to a rule matcher. When a match is made
with the beginning of a rule template (the start
procedure), that rule begins watching the input
string for tokens that trigger a full match or a
non-match (the stop procedure). When a full
match is made, it triggers the action procedure,
which typically adds an error marker to the input
stream (tagging the source code) and adds an
error to the error table. The error table is used to
generate the primary report of problems found.
When parsing the page finishes, the finish
procedure is called.

The Architecture of AccessEnable

A typical simple example is identification of a
single tag. When the parser encounters an image
tag, the start procedure of an image tag based
rule, such as the requirement of ALT tags, is
simultaneously matched with the stop procedure.
This then checks that the ALT tag is present and
records an error if it is not. The source code has
an error attribute added at that point for easy
location of the problem during fixing.

The initialization and finish procedures are used
to handle whole-page rules, such as the
requirement of a title tag or metatags.

When the user is reviewing the error report,
correctable problems can be fixed. The fix
procedure is called, and when necessary, the user
is prompted for additional information (such as
the text of an ALT tag). When a specific error is
fixed, the file or files in which it occurs are
parsed to locate the error tag and the correction is
made. Each variation on the file is checked into
RCS (a version control system) so that the user
can easily recover from undesired changes.
When the user downloads the final changes, they
are checked out of RCS and any remaining error
tags are stripped from the code.

Dynamically-generated pages can be evaluated
and repaired, but automatic correction of original
scripts that generate the code requires integration
with each and every relevant scripting tool, and it
would never be possible to fix every kind of
script. Thus, the process we support and
recommend is that template pages of code be
evaluated before integrating them into scripts.
Beyond the template, the content of pages still
needs to be evaluated, but fixes need to be
repaired by hand. Database integration is a
logical first step in expanding the tool to
dynamic environments.

THE PROCESS OF USING

ACCESSENABLE
AccessEnable is designed to fit into the work
process of web design and development. The
tool would be used at an early stage of HTML
creation when initial page templates are
constructed and at a later stage when pages are
nearly complete, usually as part of a quality
assurance process. It would also be used during
site maintenance (when only revised pages
would normally be checked) and in repairing a
site that had not originally been designed for
compliance.

The process of checking standards and making
corrections can be very time-consuming, so the
tool is designed around optimizing that process.
The process follows these steps:

1. Sign in and enter the address of your site
(option to evaluate one page or the whole
site).

2. The processing can take a while, so you
have the option of coming back later for the
complete report or reviewing the pages that
are complete at any time.

3. You start at a summary page, which
identifies the number of errors and warnings
for each ruleset you are evaluating against.

4. Then drilldown to review detailed
information on the problems found.
Alternate sorting of the error report is
possible, but for practical use, the most
common approach is to sort first by ruleset
(e.g. the 508 guidelines) then by individual
guideline, rather than by the order of
occurrence of problems in the file. Since
well-designed pages usually have few errors,
this best fits the need of methodically
verifying that each guideline is complied
with. This also provides warnings of
possible problems that can't be fully
identified automatically. These warnings
include information to facilitate the manual

identification of those problems.

5. We also provide review pages that facilitate
manual inspection of certain problems that
can't be automatically identified. These are
visualizations designed to allow more rapid
and consistent problem identification than
code review would allow. (At the time of
this writing, these are in prototype stage and
not in the online product.)

6. If repair of the errors is done online, then
there are several alternatives:
- Some detected errors or warnings can

be "skipped" when they are not
applicable to the site. AccessEnable
provides the facility to document why
these exceptions are being skipped.

- Some fixes can be done automatically.
When applicable, the user can select to
make these changes only to the current
page being reviewed or to the entire
site.

- Some fixes require more information,
such as the text of an ALT tag.
Individual fix procedures provide forms
to elicit this information and make the
fix.

- The remaining problems will need to be
fixed by hand. Instruction is provided
to facilitate manual correction.

7. Download the repaired site.

8. Review guidelines that could not be
automated. Fix any remaining problems by
hand or with the appropriate authoring tool.
If manual fixes are necessary, another online
analysis of the site will be needed for
regression testing.

9. The tool provides documentation of any
remaining errors and any justifications that
have been provided.

The main goals of this process are:
- to provide a rapid end-to-end process, not

simply identifying problems, but taking
people completely through to documented
compliance.

- to treat non-automated guideline checking
and repair as an essential part of the overall
process.

- to provide clear documentation appropriate
to meeting legal standards.

- to provide reports that support the typical
types of users: summary views for status
checking by management and "auditors",
and detailed support for quality assurance
and software development personnel.

THE REQUIREMENTS FOR A

GUIDELINES-BASED AUTOMATED

EVALUATION TOOL
Based on our experience, the following is a
summary of the types of requirements a
guidelines-based tool needs to support.

Assessment and Reporting
Does it help you focus on the compliance
process without distraction by other guidelines
(e.g. focus on Section 508 only, if that's your
need)? Are reports meaningful, clear, and
functional? Does it assist you in manually
assessing violations that can't be done
automatically? Does it provide appropriate
compliance documentation?

Precision & Completeness
Does it find everything that can be automated
(this is a matter of degree, so some way of
evaluating the completeness of alternative tools
would be valuable)? Does it work with every
web technology and across your whole website?
Is it extensible for future guidelines?

Correction
Does it automatically correct errors? Can it
correct an error everywhere across a site at once?
Does it allow interactive correction, facilitating
semi-automatic fixes? Does it remember
correction decisions from one use to the next?

Usability
Is it easy to use, accessible, and designed around
the work process of a QA specialist, developer,
or auditor? Does it provide detailed embedded
help and tips for interpreting its results.

Customization and Flexibility
Can custom guidelines be easily constructed?
Are there options that help you specifically
address site-specific problems and corrections?
Does it enable you to turn off rules and to
document why a rule was not applicable?

Technical Completeness
Is the tool fast and reliable? Does it handle
secure websites (when passwords are provided)?
Does it integrate with dynamically-generated
sites or with other web development tools? Can
it spider an entire site and can it be restricted to a
subsite or to omit certain pages?

Tom Brinck is a co-founder and officer at both
Diamond Bullet Design, a web design and
usability consulting company, and RetroAccess,
which provides an online service for
automatically evaluating and repairing the
accessibility and usability of web sites
(www.retroaccess.com). He is an adjunct
lecturer at the University of Michigan, where he
teaches user interface design and web usability.
Tom is the principal author of the book
"Usability for the Web: Designing Web Sites
That Work". He has worked at Apple Computer,
Toshiba, and Bellcore, where he's done research
on user interfaces for education, speech
interfaces, and groupware.

